75edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 74edo75edo76edo →
Prime factorization 3 × 52
Step size 16¢
Fifth 44\75 (704¢)
Semitones (A1:m2) 8:5 (128¢ : 80¢)
Consistency limit 5
Distinct consistency limit 5

75 equal divisions of the octave (abbreviated 75edo or 75ed2), also called 75-tone equal temperament (75tet) or 75 equal temperament (75et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 75 equal parts of exactly 16 ¢ each. Each step represents a frequency ratio of 21/75, or the 75th root of 2.

Theory

75et tempers out 20000/19683 (tetracot comma) and 2109375/2097152 (semicomma) in the 5-limit, and provides a good tuning for the tetracot temperament. It tempers out 225/224 and 1728/1715 in the 7-limit, supporting bunya and orwell, and providing the optimal patent val for fog.

In the 11-limit, 75e val 75 119 174 211 260] scores lower in error, and tempers 100/99 and 243/242, whereas the patent val 75 119 174 211 259] tempers 99/98 and 121/120. In the 13-limit, it tempers 325/324 and 512/507, 17-limit 120/119 and 256/255 and 19-limit 190/189 and 250/247.

Since 75 is part of the Fibonacci sequence beginning with 5 and 12, it closely approximates the peppermint temperament. The size of its fifth is exactly 704  ¢, which is very close to the peppermint fifth of 704.096  ¢. This makes it suitable for neo-Gothic tunings. It also approximates the Carlos Beta scale well (4\75 ≈ 1\[Carlos Beta]).

Odd harmonics

Approximation of odd harmonics in 75edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +2.04 -2.31 +7.17 +4.09 -7.32 +7.47 -0.27 +7.04 +6.49 -6.78 -4.27
relative (%) +13 -14 +45 +26 -46 +47 -2 +44 +41 -42 -27
Steps
(reduced)
119
(44)
174
(24)
211
(61)
238
(13)
259
(34)
278
(53)
293
(68)
307
(7)
319
(19)
329
(29)
339
(39)

Intervals

Steps Cents Ups and downs notation Approximate ratios
0 0 D 1/1
1 16 ^D, v4E♭
2 32 ^^D, v3E♭ 65/64
3 48 ^3D, vvE♭ 33/32, 36/35, 65/63, 77/75
4 64 ^4D, vE♭ 27/26, 28/27, 80/77
5 80 ^5D, E♭
6 96 ^6D, v7E
7 112 ^7D, v6E 16/15, 77/72
8 128 D♯, v5E 14/13
9 144 ^D♯, v4E 13/12
10 160 ^^D♯, v3E 11/10, 35/32
11 176 ^3D♯, vvE 72/65
12 192 ^4D♯, vE 39/35
13 208 E 9/8
14 224 ^E, v4F 25/22
15 240 ^^E, v3F
16 256 ^3E, vvF 52/45, 65/56, 81/70
17 272 ^4E, vF 7/6, 75/64
18 288 F 32/27, 77/65
19 304 ^F, v4G♭
20 320 ^^F, v3G♭ 6/5, 65/54, 77/64
21 336 ^3F, vvG♭ 40/33, 63/52
22 352 ^4F, vG♭
23 368 ^5F, G♭ 26/21
24 384 ^6F, v7G 5/4, 56/45, 81/65
25 400 ^7F, v6G 49/39
26 416 F♯, v5G
27 432 ^F♯, v4G 9/7, 32/25, 77/60
28 448 ^^F♯, v3G 35/27
29 464 ^3F♯, vvG
30 480 ^4F♯, vG 33/25
31 496 G 4/3
32 512 ^G, v4A♭ 35/26
33 528 ^^G, v3A♭ 65/48
34 544 ^3G, vvA♭ 48/35
35 560 ^4G, vA♭ 18/13
36 576 ^5G, A♭ 39/28
37 592 ^6G, v7A 45/32
38 608 ^7G, v6A 64/45, 77/54
39 624 G♯, v5A 56/39
40 640 ^G♯, v4A 13/9, 81/56
41 656 ^^G♯, v3A 35/24
42 672 ^3G♯, vvA
43 688 ^4G♯, vA 52/35
44 704 A 3/2
45 720 ^A, v4B♭ 50/33
46 736 ^^A, v3B♭
47 752 ^3A, vvB♭ 54/35, 65/42, 77/50
48 768 ^4A, vB♭ 14/9, 25/16, 81/52
49 784 ^5A, B♭
50 800 ^6A, v7B 78/49
51 816 ^7A, v6B 8/5, 45/28, 77/48
52 832 A♯, v5B 21/13
53 848 ^A♯, v4B
54 864 ^^A♯, v3B 33/20, 81/49
55 880 ^3A♯, vvB 5/3
56 896 ^4A♯, vB
57 912 B 27/16
58 928 ^B, v4C 12/7, 75/44, 77/45
59 944 ^^B, v3C 45/26
60 960 ^3B, vvC
61 976 ^4B, vC 44/25
62 992 C 16/9
63 1008 ^C, v4D♭ 70/39
64 1024 ^^C, v3D♭ 65/36
65 1040 ^3C, vvD♭ 20/11, 64/35
66 1056 ^4C, vD♭ 24/13
67 1072 ^5C, D♭ 13/7
68 1088 ^6C, v7D 15/8
69 1104 ^7C, v6D
70 1120 C♯, v5D
71 1136 ^C♯, v4D 27/14, 52/27, 77/40
72 1152 ^^C♯, v3D 35/18, 64/33
73 1168 ^3C♯, vvD
74 1184 ^4C♯, vD
75 1200 D 2/1

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [119 -75 [75 119]] -0.645 0.645 4.03
2.3.5 20000/19683, 2109375/2097152 [75 119 174]] -0.099 0.936 5.85
2.3.5.7 225/224, 1728/1715, 15625/15309 [75 119 174 211]] -0.713 1.337 8.36

Music